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ABSTRACT 

 

Online rebinning is an important and well-established technique for reducing the time 

required to process Positron Emission Tomography data. However, the need for efficient 

data processing in a clinical setting is growing rapidly and is beginning to exceed the 

capability of traditional online processing methods. High-count rate applications such as 

Rubidium 3-D PET studies can easily saturate current online rebinning technology. Real-

time processing at these high-count rates is essential to avoid significant data loss. In 

addition, the emergence of time-of-flight (TOF) scanners is producing very large data 

sets for processing. TOF applications require efficient online Rebinning methods so as to 

maintain high patient throughput. Currently, new hardware architectures such as Graphics 

Processing Units (GPUs) are available to speedup data parallel and number crunching 

algorithms. In comparison to the usual parallel systems, such as multiprocessor or 

clustered machines, GPU hardware can be much faster and above all, it is significantly 

cheaper. The GPUs have been primarily delivered for graphics for video games but are 

now being used for High Performance computing across many domains. The goal of this 

thesis is to investigate the suitability of the GPU for PET rebinning algorithms. 
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1 INTRODUCTION 

Online rebinning algorithms are very high count-rate applications that require real 

time data processing to avoid data loss during the process. The implementation of PET 

rebinning algorithms on a parallel computing platform provides a possible solution to 

meet the demands of efficient data processing in a clinical setting. Using a Graphics 

Processing Unit (GPU) to implement the rebinning algorithms improves the 

computational performance and allows for a high input data rate. 

In this thesis the focus will be towards the analysis of GPU architecture, the analysis of 

Rebinning algorithm and the implementation. The limited focus in going into the details 

of the rebinning algorithms is the restricted permissions from the original developers of 

the algorithm at CTI Siemens. 

1.1 MOTIVATION 

The motivation of this work comes from the idea of implementing the rebinning 

algorithm on a GPU instead of the existing dedicated PDR rebinning hardware. The 

rebinning algorithms are highly parallelizable and thus are highly suited for the GPU 

architecture. 
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1.2 ORGANIZATION 

Chapter 2 presents an introduction to Positron Emission Tomography (PET) and 

also the working principles. The functionality, history and working of PET have been 

discussed. Chapter 3 presents the details about the related work. A brief description about 

the existing dedicated rebinning hardware is presented. Chapter 4 presents the design 

approach for the implementation. GPU and Compute Unified Device Architecture are 

elaborately discussed. Chapter 5 discusses about the PET physics and rebinning. An 

outline of the rebinning algorithm is discussed. 
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2 POSITRON EMISSION TOMOGRAPHY 

2.1 INTRODUCTION 

Positron emission tomography (PET) is a major diagnostic imaging modality that helps 

the doctors view the patient’s internal organs. It is a radiotracer imaging technique in 

which small amounts of radioisotopes are injected into a patient to visualize and track 

biochemical and physiological processes in vivo. It produces two-dimensional or three-

dimensional images that reflect tracer concentration within the patient. This concentration 

is proportional to volumetric metabolic activity and often correlates with physical 

abnormalities. The main reason for the importance of PET in medical research is the 

existence of positron emitting isotopes such as carbon, nitrogen, and oxygen, which may 

be processed to create a range of tracer compounds which are similar to naturally 

occurring substances in the body. For example, one of the most widely used isotopes is 

the positron emitting isotope of fluorine, 18F [1]. 18F can be substituted, through a 

chemical synthesis process, for hydrogen in complex compounds such as glucose forming 

Fluro-deoxy-glucose (FDG). When FDG is injected into the patient, the body will attempt 

to use it in the same fashion as it would normal glucose. A modern PET scanner is shown 

in Figure 2.1. 
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Figure 2.1 PET Scanner 
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2.2 HISTORY OF PET 

Researchers interest in positron emitting isotopes arose from the fact that three of the 

most basic elements in the human body (carbon, nitrogen, and oxygen) occur as positron 

emitters. Tatsuo Ido et al at the Brookhaven National Laboratory was the first to describe 

the synthesis of 18F-FDG, the most commonly used PET scanning isotope carrier [14]. 

Abass Alavi et al first administered the compound to two normal human volunteers in 

August 1976 at the University of Pennsylvania [15]. FDG was later used in dedicated 

positron tomographic scanners, to yield the modern procedure [16]. The development of 

radiopharmaceuticals like FDG made it easier to study living beings, and set the 

groundwork for more in-depth research into using PET to diagnose and evaluate the 

effect of treatment on human disease [16]. 

The first PET camera development is credited to Rankowitz in 1962 [12]. The scanner 

was developed at Brookhaven National Laboratory [16]. The design consisted of a single 

ring of 32 sodium iodide crystals that allowed each crystal to be in coincidence with 

number of other crystals. The poor stopping ability of the sodium iodide detectors led to 

the loss of sensitivity gains due to the scanners electronic collimation. 

David Kuhl and Roy Edwards made another attempt in 1963 [13]. Michel Ter-Pogossian, 

Michael E. Phelps and others further developed tomographic imaging techniques at the 

Washington University School of Medicine [1]. 
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Through the 1970s, many single PET camera designs were attempted. One of the first 

successful PET cameras was developed in 1975[16]. It consisted of 48 detectors in six 

banks. The detectors were made of a long cylinder of sodium iodide with one 

photomultiplier tube mounted at each end of the cylinder. These cylindrical detectors 

were arranged with their length axis parallel with patient opening axis [11]. Axial 

positioning was performed by the ratio of light seen by the two photo multiplier tubes. 

This ratio space was equally divided into four axial planes. By accepting adjacent ring 

coincidences, three cross planes of data were also created, producing a total of seven 

planes of data. 

2.3 APPLICATION AREAS 

The largest area of clinical use of PET is in oncology. The most widely used tracer in 

oncology is 18F-Fluoro-deoxy-glucose (18F-FDG). 18F-FDG is relatively easy to 

synthesize with a high radiochemical yield [3] .It is used to detect and determine whether 

a cancer has spread in a body and assess the effectiveness of the treatment plan.  

PET also has applications in cardiology. 13N-NH3 is used as a tracer for myocardial 

perfusion. When 13N-NH3 and 18F-FDG scans of the same patient are interpreted together, 

PET can be used to distinguish between viable and non-viable tissue in poorly perfused 

areas of the heart [4]. Such information is extremely valuable in determining the effects 

of a heart attack, or myocardial infarction, on areas of the heart and also to identify areas 

of the heart muscle that would benefit from a procedure such as angioplasty or coronary 

artery bypass surgery (in combination with a myocardial perfusion scan) [7]. 
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In neurology, PET has been used in evaluating brain abnormalities, such as tumors, 

memory disorders, seizures, and other central nervous system disorders [8]. It offers the 

possibility of quantitative measurements of biochemical and physiological processes in 

vivo. This is important in both research and in clinical applications. For example, it has 

been shown that semi-quantitative measurements of FDG uptake in tumors can be useful 

in the grading of disease [5]. Some examples of these radiotracers are shown in Table 2.1, 

together with some typical clinical and research applications. 

 

Table 2.1 Radiotracers and their clinical applications 

Isotope Tracer 
compound 

Physiological  
function Typical application Reference 

11C methionine protein synthesis oncology 
Hellman et al 

[6] 

13N ammonia blood perfusion myocardial perfusion Kuhle et al [7] 

15O carbon dioxide blood perfusion brain activation studies 
Kanno et al [8] 

18F 
Fluoro-deoxy-

glucose 
glucose metabolism 

oncology, neurology, 

cardiology 

Brock et al [9] 

8F Fluoride ion bone metabolism oncology 
Hawkins et al 

[10] 
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2.4 PET FUNCTIONALITY 

A very small amount of a radio labeled compound is injected into the subject. The 

injected or inhaled compound accumulates in the tissue to be studied. This compound, 

which closely resembles a natural substance used by the body, is meticulously selected to 

have a specified short life and is generally in the form of glucose. The radioactive 

substance used during a PET scan depends on the organ under investigation as different 

tissues in the body take up different radionuclides. 

The subject is placed within the Field of View (FOV) of a number of detectors capable of 

registering incident gamma rays. The injected or inhaled compound accumulates in the 

tissue to be studied. As the radioactive atoms in the compound decay, they release 

smaller particles called positrons that are positively charged. When the positrons reach 

thermal energies, they start to interact with electrons by annihilation and their rest masses 

are converted into a pair of annihilation photons. Each annihilation produces two photons 

(light particles) having identical energies (511 KeV) and are emitted simultaneously in 

~180 degree opposing directions. These photons may be detected by the detectors, which 

are linked so that two detection events unambiguously occurring within a certain time 

window may be called coincident and thus be determined to have come from the same 

annihilation. Figure 2.2 illustrates the process of annihilation and emission.  
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Figure 2.2 Annihilation and emission (Adapted from [1] with permission) 

The near simultaneous detection of the two photons enables PET to localize their origin 

along a line between the two detectors known as Line of Response (LOR). In the PET 

camera, each detector generates a timed pulse when it registers an incident photon. These 

pulses are then combined in coincidence circuitry, and if the pulses fall within a short 

time-window, they are deemed to be coincident. These coincident events can be stored in 

arrays corresponding to projections through the patient and reconstructed using 

tomographic techniques. Figure 2.3 shows an overview this process. 
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Figure 2.3 Event Detection (Adapted from [1] with permission) 

The number of positrons emitted is proportional to the chemical activeness of the organ 

or tissue as it indicates the amount of radioactive substance the organ has taken up. 

Hence, areas that take up more compounds are brighter on a PET scan and areas that 

don’t intake much compound are damaged and are therefore not as bright on a PET scan.  

The information from PET is further processed and converted into images.  

The resulting pictures do not show as much detail as Computed Tomography (CT) or 

Magnetic Resonance Imaging (MRI) because the pictures show only the location of the 

tracer. The PET picture may be matched with those from a CT scan to get more detailed 

information about where the tracer is located. 
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3 APPROACH 

3.1 GRAPHICS PROCESSING UNITS 

Traditionally, many applications are written as sequential programs, whose execution can 

be understood by sequentially stepping through the code.  A single processor core is used 

to run the sequential program. These single processor cores are not expected to become 

much faster than those of today as at a frequency of about 4 GHz the heat losses are too 

big, hence it is not practical to increase the clock speeds of single core. 

Without performance improvement, application developers will no longer be able to 

introduce new features and capabilities into their software, reducing the growth 

opportunities of the entire computer industry. Rather, the applications software that will 

continue to enjoy performance improvement with each new generation of 

microprocessors will be a parallel program, in which multiple threads of execution 

cooperate to achieve faster functionality. 

A Graphic Processing Unit (GPU) is a dedicated graphics-rendering device. GPUs are 

very efficient at manipulating and displaying computer graphics, and their highly parallel 

structure makes them more effective than general-purpose CPUs for a range of complex 

algorithms. 
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3.1.1 DIFFERENCE BETWEEN CPU AND GPU 

Physical matters and high power consumption now limit CPU frequency growth. 

Increasing the number of cores often raises their performance. GPUs are based on a 

multiprocessor with many cores and hundreds of Arithmetic logic units (ALU), several 

thousand registers, and some shared memory. Besides, a graphics card contains fast 

global memory, which can be accessed by all multiprocessors, local memory in each 

multiprocessor, and special memory for constants. The multiprocessor cores in a GPU are 

Single Instruction Multiple Data (SIMD) cores. These cores execute the same instructions 

simultaneously. This programming style is essential for graphics algorithms and many 

scientific tasks. Figure 3.1 illustrates differences in the design of a CPU and a GPU 

where GPU devotes more transistors for data processing than data caching and flow 

control [19]. 

 

Figure 3.1 CPU and GPU Block Representation (reproduced from [20]) 
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CPU cores are basically designed to execute a small number thread of sequential 

instructions with maximum speed, though some parallel applications can be programmed 

through MPI [31]. GPUs are designed for fast execution of many parallel instruction 

threads. The GPUs use a lot of execution units that can be easily loaded, unlike sequential 

instruction threads for CPU [17].  

Memory operations are different in GPUs and CPUs. For example, not all CPUs have 

built-in memory controllers, and GPUs usually have several controllers. Besides, 

graphics cards use faster memory, so GPUs enjoy much higher memory bandwidth, 

which is relevant for parallel computations with huge data streams. 

CPUs use caches to increase their performance owing to reduced memory access 

latencies, and GPUs use caches or shared memory to increase memory bandwidth. CPUs 

reduce memory access latencies using large caches as well as branching prediction. These 

hardware parts take up most of the die surface and consume much power. GPUs solve the 

problem of memory access latencies using simultaneous execution of thousands threads, 

when one thread is waiting for data from memory, a GPU can execute another thread 

without latencies. 

There exist a lot of differences in multi-threaded operations as well. CPUs can execute 1-

2 threads per core, while GPUs can maintain up to 1024 threads per multiprocessor (there 

are several of them in a GPU). Switching from one thread to another costs hundreds of 

cycles to CPUs, but GPUs switch several threads per cycle. 
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Using GPUs for computing demonstrates excellent results in algorithms that use parallel 

data processing. That is, when the same sequence of mathematical operations is applied 

to a large volume of data. The best results are achieved if the number of arithmetic 

instructions significantly exceeds the number of memory access calls.  

The GPU is designed as a numeric computing engine and it will not perform well on 

some tasks that CPUs are designed to perform well. GPU algorithms do not perform as 

well on small sizes due to the overhead of the graphics Asynchronous Programming 

interface (API) [19]. Therefore, one should expect that most applications would use both 

CPUs and GPUs, executing the sequential parts on the CPU and numeric intensive parts 

on the GPUs. This is why the Compute Unified Device Architecture (CUDA) 

programming model is designed to support joint CPU-GPU execution of an application. 

Another important consideration for using GPUs is the support for the IEEE 754 

Floating-Point standard by the GPUs [19]. GPU support for the IEEE Floating-Point 

standard has become comparable with that of the CPUs. As a result, one can expect that 

more numerical applications will be ported to GPUs and yield comparable values as the 

CPUs. A major remaining issue is that the GPUs floating-point arithmetic units are 

primarily single precision today.  

As a result of all differences described above, theoretical performance of graphics 

processors is much higher than CPU performance 
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Figure 3.2 Performance between GPUs and CPUs for Single precision Floating Point 
operations (Based on slide 7 from GPU Physics SIGGRAPH 2007) 

 

3.1.2 GPU ARCHITECTURE 

The GPU used for this research is the NVIDIA 280 GTX based on the Tesla Architecture. 

The Tesla computing architecture [17] was designed by NVIDIA to speedup programs 

written in the Compute Unified Device Architecture (CUDA) programming language. 

This architecture is built around a processor array, divided into a number of Simultaneous 

Multithreading (SM) multiprocessors, each containing eight scalar Scalable Parallel 

processor cores [18]. SM is a technique permitting several independent threads to issue 

instructions to a superscalar processor’s multiple functional units in a single cycle. The 

objective of SM is to substantially increase processor utilization in the face of both long 

memory latencies and limited available parallelism per thread. The SM multiprocessor 

provides a very easy low latency thread synchronization facility, which enhances efficient 

communication between threads in a block. 
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3.1.2.1 TESLA ARCHITECTURE 

Figure 3.3 shows the Tesla architecture of the GeForce GTX 280. It has 240 Scalable 

Parallel streaming processor cores, divided into 30 Simultaneous Multithreading 

multiprocessors [17]. Each multithreaded SP core shares a register file of 2,048 entries 

and executes 128 concurrent threads; in total, the GPU executes up to 30,720 concurrent 

threads. 

 

 

Figure 3.3 Nvidia Tesla Architecture (reproduced from [19]) 
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The deep multithreading Tesla architecture provides latency tolerance, allowing resources 

to be dedicated towards throughput rather than large caches. It is preferable to operate on 

massively parallel number crunching problems. Creation of a thread and its scheduling 

and its destruction are done at negligible cost in the hardware with virtually no overhead 

involved in thread scheduling [18]. Threads described in the CUDA program are mapped 

to physical threads resident in the GPU. 

3.1.2.2 SINGLE INSTRUCTION MULTIPLE THREAD 

The Tesla architecture employs the Single Instruction Multiple Thread (SIMT) 

architecture [17]. SIMT has been developed to manage and execute hundreds of threads 

running different programs efficiently. In SIMT the blocks threads are divided into warps 

containing 32 threads, which at a particular time can execute only a single instruction. 

The threads in the warp can execute an instruction by following different code paths; this 

is known as divergence. The threads must wait for the other threads to finish their 

instructions; this is known as convergence. Each thread has its own instruction address 

and register state. In most typical data parallel programs, all the threads in a warp execute 

the same instruction, which leads to a notable gain in execution speed when implemented 

on hardware that employs SIMT. 

The SIMT architecture is similar to a single instruction, multiple-data (SIMD) design, 

which applies one instruction to multiple data lanes. The difference is that SIMT applies 

one instruction to multiple independent threads in parallel, not just multiple data lanes 

[1]. In contrast to SIMD vector architectures, SIMT enables programmers to write thread 
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level parallel code for independent threads as well as data-parallel code for coordinated 

threads [17]. 

3.1.2.3 STREAMING MULTIPROCESSORS 

Figure 3.4 shows the block diagram of a Streaming Multithreaded (SM) Processor. It is a 

computing and graphics processor that executes pixel shader and parallel computing 

programs [17]. Eight streaming processors (SP), shared memory, instruction cache, 

constant cache (C-Cache), two special function units (SFU) and a multithreaded 

instruction fetch and issue unit (MT Issue) make up the SM. 

 

Figure 3.4 SM Multithreaded Processor (reproduced from [19]) 
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Shared memory is a high-speed memory cache used to store the shared data for parallel 

computation and can be accessed by the threads. The SFUs are used for floating point 

operations and other atomic operations. The SPs are connected to the shared memory 

through a low latency network. 

3.1.2.4 PARALLEL COMPUTING MODEL 

The scalable Tesla architecture leads to faster execution for high throughput performance 

computing or data intensive applications. Thus the Tesla architecture favors the 

applications that are based on data parallelism, or require intensive floating-point 

operations or high memory bandwidth. 

Figure 3.5 depicts the model for programming a data parallel application for a GPU. The 

program is written by partitioning the problem into grids with each grid sub divided into 

blocks, which are independently parallel [17]. So the SM computes the blocks while the 

individual threads operate on the individual elements. 
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Figure 3.5 Decomposition structure of a parallel program for GPU 
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3.2 COMPUTE UNIFIED DEVICE ARCHITECTURE 

3.2.1 INTRODUCTION 

Compute Unified Device Architecture (CUDA) is a parallel computing architecture 

developed by NVIDIA Corporation. It is the computing engine in NVIDIA graphics 

processing units or GPUs. CUDA is a co-evolved hardware-software architecture that 

enables high performance computing developers to harness the tremendous 

computational power and memory bandwidth of the GPU in a familiar programming 

environment – the C programming language [19]. CUDA enables programmers to access 

this computing power without the need to be familiar with computer graphics 

programming like OpenGL, DirectX etc. 

3.2.2 CUDA PROGRAM STRUCTURE 

A basic CUDA program can be considered to be of two parts based on the platform they 

are executed. The parts that exhibit little or no data parallelism are implemented on the 

CPU and is called host code. The parts that exhibit data parallelism are implemented on 

the GPU and are known as device code. The NVIDIA C Compiler (NVCC) is designed to 

recognize and separate the two [19]. The host code is C code only. It is compiled with the 

host's standard C - compiler and runs as an ordinary process. The device code is written 

in ANSI C with extended library functions. These extended library functions are called 

kernels. The device code is compiled by the NVCC, and it executes on a GPU device. 

Kernels typically generate a large number of threads to exploit data parallelism. The 
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threads take very few cycles to generate and schedule due to efficient hardware support. 

This is in contrast with a CPU thread that typically takes thousands of clock cycles to 

generate and schedule. 

3.2.3 ADVANTAGES 

CUDA differs from older GPU programming methods in that the architecture is designed 

for efficient usage of non-graphics computations and uses the C programming language. 

It offers a new way of GPU computing that does not use a graphics Application 

Programming Interface (API).  

CUDA has special hardware features that were non-existent in prior graphics APIs. On 

important feature is Shared Memory. Shared Memory a thread accessible small volume 

of memory (16 KB per multiprocessor). The most frequently used data can be cached 

using this memory [21]. Thus, it reduces memory access latencies in implementing 

parallel algorithms. For example, it's useful for linear algebra, fast fourier transformation, 

and image processing filters. 

CUDA also offers more convenient access to memory. It supports the concept of scatter. 

Scatter is the ability to write an unlimited number of values to any addresses. Such 

advantages allow GPUs to execute algorithms that cannot be effectively implemented 

with GPGPU methods based on graphics APIs [22]. 
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3.2.4 HARDWARE MODEL 

The Tesla architecture is built around a scalable array of multithreaded Streaming 

Multiprocessors. When a CUDA program on the host CPU invokes a kernel grid, the 

blocks of the grid are enumerated and distributed to multiprocessors with available 

execution capacity. The threads of a thread block execute concurrently on one 

multiprocessor. As thread blocks terminate, new blocks are launched on the vacated 

multiprocessors. 
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Figure 3.6 CUDA Hardware Model (adapted from [20]) 
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3.2.5 PROGRAMMING MODEL 

The CUDA programming model is very well suited to exploit the parallel capabilities of 

GPUs. The latest generation of NVIDIA GPUs, based on the Tesla Architecture. It 

supports the CUDA programming model and tremendously accelerates CUDA 

applications [20]. 

CUDA uses a parallel computing model, in which each of the SIMD processors executes 

the same instruction over different data elements simultaneously. A GPU is a computing 

device acting as a co-processor (device) for a CPU (host), possessing its own memory, 

and processing multiple threads in parallel. 

 

Figure 3.7 CUDA Programming Model 
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The CUDA programming model enables the grouping of threads. Threads unite into 

thread blocks, one- or two-dimensional grids of threads that interact with each other via 

shared memory. A program (kernel) is executed over a grid of thread blocks as illustrated 

in Figure 3.7, one grid is executed at a time. Each block can be one-, two-, or three-

dimensional in form, and it may consist of 512 threads. Thread blocks are executed in the 

form of small groups called warps (32 threads each). 

Grouping blocks into grids helps avoid the limitations and applies the kernel to more 

threads per call. It also helps in scaling. If a GPU does not have enough resources, it will 

execute blocks one by one. Otherwise, blocks can be executed in parallel, which is 

important for optimal distribution of the load on GPUs of different levels. 

3.2.6 CUDA MEMORY MODEL 

The CUDA memory model allows byte wise addressing and support for scatter and 

gather [20]. There are up to 1024 registers per streaming processor. Access to these 

registers is very fast. These registers can store 32-bit integer or single precision floating-

point numbers. The CUDA memory model is shown in Figure 3.8 and is summarized in 

the following sections. 
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Figure 3.8 CUDA Memory Model (reproduced from [20]) 
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Global Memory is the largest volume of memory available to all multiprocessors in a 

GPU. It’s size ranges from 256 MB to 4 GB (up to 4 GB in Tesla) [19]. It offers high 

bandwidth. High-end solutions from Nvidia have bandwidths exceeding 100 GB/s to 

access the Global Memory. Global Memory suffers from very high latencies (several 

hundred cycles) [19] and is not cached. It is read/write accessible to grids. 

Local Memory is a small volume of memory, which can be accessed by a single 

streaming processor. Its bandwidth is low and is limited in size. Like Global Memory, 

Local Memory is not cached and thus the accesses incur large penalties [20]. Local 

Memory is read/write accessible to threads. 

Shared Memory is a 16-KB memory accessible to all streaming processors. Like 

registers, shared memory is fast access (low - latency). This memory enables interaction 

between threads [20]. Advantages of shared memory include its usage as a controllable 

L1 Cache, reduced latencies for ALUs accesses, and fewer calls to global memory [20]. 

Shared memory is read/write accessible to blocks.  

Constant Memory is read only. It has a memory area of 64 KB [2]. It's cached by 8 KB 

for each multiprocessor. Reading from the constant cache is as fast as reading from a 

register as long as all threads read the same address [20]. On a cache miss it is as slow as 

global memory [20].  

Texture Memory is also a read only memory and is available for reading to all 

multiprocessors. The texture units in a GPU fetch data. Texture Memory is cached by 8 
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KB for each multiprocessor. Texture Memory costs one read from texture cache but on a 

cache miss it is as slow as global memory [20].  

Global, local, texture, and constant memory are physically the same memories as local 

video memory of a graphics card. They differ only in caching algorithms and access 

models. CPUs can refresh and access only the external memory, i.e. the global, constant, 

and texture memories. 
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4 RELATED WORK 

Online rebinning is an important and well-established technique for reducing the time 

required to process PET data. It is a common part of PET data acquisition and is 

necessary for downstream support of on-line histogramming. On-line rebinning and 

histogramming serve to minimize post processing and speed the delivery of medical 

images [23].  

4.1 PRESENT SYSTEM 

Most Siemens PET tomographs shipped in the past 5 years use the Petlink DMA 

Rebinner (PDR) card for online rebinning. The PDR was designed by CPS Innovations, 

Inc. prior to the company being acquired Siemens Medical Solutions USA, Inc in 2005.  

Figure 4.1 is the present system diagram showing the PET Gantry and the PET Data 

Acquisition System containing the Petlink DMA Rebinner (PDR) card. The PDR is a PCI 

card designed for general purpose, rapid-yet-accurate, on-line LOR-to-bin mapping of 

PET coincidence data. On the PDR, LUTs service the computations required for mapping 

from detector-pair space into projection data space. The output of this pipeline is returned 

to the router FPGA and is then typically output by direct memory access in 32-bit bin 

address packet form. Besides rebinning, the PDR card is also used for data acquisition of 

detector pair event words and tag packets received from the gantry. 
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Figure 4.1 Present system with PET Gantry and Acquisition system with PDR card 

(Reprinted from [25] with permission) 

4.2 PDR HARDWARE DESCRIPTION 

Principal interfaces for the PDR include: dual Fibre Channel transceivers for streaming of 

PETLINKTM packets, 64/66-MHz PCI bus for DMA transfers of PETLINKTM detector-

pair and bin address packets, and an RS-232 serial port for “real-time” updates of gating 

and rotational position information [23]. Figure 4.2 shows a snapshot of the PDR. It is a 

PCI bus interface board [23].  There are two Xilinx Virtex II Pro FPGAs and twenty 4M 

x 16 bit flash memory devices on the board that are used to carry out main computation 

and processing tasks. A third Xilinx Virtex II Pro is used to interface the interface devices 

with Fibre Channel, PCI, and RS 232 [23], provide register interface, and other logic 

functions.  
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Figure 4.2 Snapshot of a PDR (reprinted from [23] with permission) 

4.2.1 PROCESSING 

A sequence of transformations is required to convert a detector-pair packet to a bin 

address packet. The on-line rebinning function requires a sequence of transformations to 

convert a detector-pair packet to a bin address packet.  Typical transformations include: 

the calculation of the physical location and angular aspect of each line of response (LOR) 

defined by each incoming detector-pair packet, dynamic determination of “emission” and 

“transmission” LORs using a process known as “rod windowing,” and a “nearest-

neighbor” calculation to map each detector pair into the appropriate bin in the 3-D bin-

address space [23].  In the PDR, a pipeline-architecture is employed to accomplish the 

sequence of transformations required for a given algorithm. Each stage of the pipeline is 

dedicated to a specific part of the sequence.  A stage may employ one of multiple LUTs 

as processing engines (flash memory devices).  The maximum clock rate for the pipeline 

is limited by the minimum access time of the flash memory [23]. 
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4.2.2 DATAFLOW 

Figure 4.3 represents the PDR block diagram showing the chip architecture. The PDR 

receives and/or transmits event packets on dual Fiber Channel fiber-optic links as well as 

a 64/66 PCI interface. The PDR contains flash memory and FPGA devices to form a 

pipeline [24]. Figure 4.4 is a sample rebinning pipeline diagram based on the model 

proposed by Jones et al. [25]. The algorithm is divided into 3 stages distributed across the 

two FPGAs, which are referred to as “group” FPGAs and are designated as Group A and 

Group B [23]. The thick vertical lines “1 2 3 4” represent the pipeline holding registers. 

 

 

 

Figure 4.3 PDR Block Diagram (reproduced from [25]) 
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Figure 4.4 Stage Digital PDR pipeline (reprinted from [25] with permission) 

Each LUT represents a separate Flash memory chip, which is programmed with the LUT 

content. Text at the left of each LUT box represent address input fields with bit size 

shown. At the right of each LUT box are data output fields with bit size shown. Stage 1 is 

part of the transaxial processing stage.  The AX, BX and XE fields from each incoming 

detector-pair packet are applied to the LUT address lines to produce the sinogram index 

(SI), “swap” bit (SWAP), and “field-of-view OK” indicator (FOVOK).  

Stage 2 is implemented in the Group B FPGA. Stage 2 is part of the axial processing 

stage.  It uses intermediate results computed from Stage 1 as well as the AY and BY 

fields from the original input packet to compute the sinogram number (SN) and the 

“plane OK” indicator (PLNOK).  The final stage of the pipeline does not use a LUT 

engine; rather, FPGA slices and hardware multipliers are used to compute the bin 
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address. Finally, only those packets having both FOVOK and PLNOK set are passed 

through for acquisition; all other packets (except for tag packets) are discarded [23].  

The PDR card has proven to be effective for tasks in PET rebinning but can only achieve 

a pipeline throughput of 13 to 15 Million Events/sec [25]. While adequate for most 

clinical PET applications, it is not quite adequate for very high-count rate applications 

such as the latest PETs, which can approach 20 Million Events/sec. This leads us to 

explore new architectures that can achieve higher pipeline throughputs for a faster and 

effective rebinning. 
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5 PET PHYSICS AND REBINNING 

When a positron undergoes annihilation with an electron, their rest masses are converted 

into a pair of annihilation photons. These photons have identical energies (511 KeV)[1] 

and are emitted simultaneously in ~180 degree opposing directions. These photons may 

be detected by the detectors, which are linked so that two detection events 

unambiguously occurring within a certain time window may be called a coincident and 

thus be determined to have come from same annihilation. This is known as Coincidence 

Detection. These coincident events can be stored in arrays corresponding to projections 

through the patient and reconstructed using tomographic techniques. The resulting 

pictures do not show as much detail as Computed Tomography (CT) or Magnetic 

Resonance Imaging (MRI) because the pictures show only the location of the tracer. The 

PET picture may be matched with those from a CT scan to get more detailed information 

about where the tracer is located. 

5.1 COINCIDENCE DETECTION 

In a PET, each detector generates a timed pulse when it registers an incident photon. 

These pulses are then combined in coincidence circuitry, and if the pulses fall within a 

short time-window, they are deemed to be coincident. A coincidence event is assigned to 

a line of response (LOR) joining the two relevant detectors. 

Event Detection in PET Detector is based on electronic collimation. An event is valid if it 

satisfies the following 
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I. The two photons are detected within a predefined electronic time window 

(coincidence window), which is typically 6 to 10 nanoseconds (1 ns = 10-9 

sec). 

II. The subsequent LOR formed between them is within a valid acceptance angle 

of the tomograph. 

III. The energy deposited by both the photons in the crystal is within the selected 

energy window. 

Figure 5.1 shows a pair of detectors in PET. The shaded area depicts the area from which 

a near simultaneous annihilation photons can be detected by the detectors. Not all 

annihilations are detected since it is necessary that both photons strike the detectors. 

 

Figure 5.1 Coincidence Detection 



www.manaraa.com

 
38 

5.2 TIME OF FLIGHT (TOF) 

In a PET scan when a positron collides with an electron, two gamma rays are generated 

in the annihilation process. The detector ring is looking for two, almost “simultaneous” 

rays, which is then noted as an event and is stored as data. Therefore using the time 

difference (fraction of a second) between the gamma rays, the scanner can pinpoint the 

original location of the positron-electron annihilation. 

As we know that when each nucleus decays, a positron is released that immediately 

collides with an electron, creating an annihilation that releases a pair of photons, or 

gamma rays. These two photons travel away from the collision point at 180° from each 

other. After detecting the photons, the PET scanner’s computer uses that information to 

calculate where the radioactive agent is concentrated and produce an image localizing the 

affected area. TOF makes it possible for the point of origination of annihilation to be 

more accurately predicted, which leads to more accurate imaging. Improved event 

localization reduces noise in image data, resulting in higher image quality. 

If the difference in the arrival times is Δt and c is the velocity of light then the location of 

annihilation event with respect to the midpoint between the two detectors s given by [1]                    

€ 

Δd =
Δt *c
2  [1] 
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5.3 TYPES OF COINCIDENT EVENTS 

Coincident events in PET can be categorized into four types: true, scattered, random and 

multiple. 

5.3.1 SCATTERED COINCIDENCE 

A scattered coincidence is one in which at least one of the detected photons has 

undergone at least one Compton scattering event prior to detection as shown in Figure 5.2 

Since the direction of the photon is changed during the Compton scattering process, it is 

highly likely that the resulting coincidence event will be assigned to the wrong LOR [1]. 

Scattered coincidences add a background to the true coincidence distribution, which 

changes slowly with position, decreasing contrast and causing the isotope concentrations 

to be overestimated [1]. The number of scattered events detected depends on the volume 

and attenuation characteristics of the object being imaged and on the geometry of the 

camera [1] 

 

Figure 5.2 Scattered Coincident Event (adapted from [1]) 
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5.3.2 TRUE COINCIDENCE 

A coincident event is considered to be true when both photons from an annihilation event 

are detected by detectors in coincidence, neither photon undergoes any form of 

interaction prior to detection, and no other event is detected within the coincidence time-

window. Figure 5.3 depicts the true event scenario. 

 

 

 

Figure 5.3 True Coincident Event (adapted from [1]) 
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5.3.3 RANDOM COINCIDENCE 

When two photons not arriving from the same annihilation are incident on the detectors, 

it is considered to be random event as shown in Figure 5.4. The number of random 

coincidences in a given LOR is closely linked to the rate of single events measured by the 

detectors joined by that LOR. The rate of random coincidences increases roughly with the 

square of the activity in the FOV [1]. The number of random events depends on the 

volume of the subject being imaged [1]. 

It is not possible to determine the LOR when more than two photons are detected in 

different detectors within the coincidence time window and thus the event is rejected. 

 

 

Figure 5.4 Random Coincident Event (adapted from [1]) 
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5.4 DATA ACQUISITION FOR PET – 2 D MODE AND 3 D MODE 

Most of the cameras in PET technology employ either two-dimensional or three-

dimensional modes. In two-dimensional (2-D) mode a thin septa usually of lead separate 

is used. Events are only recorded between detectors within the same ring or lying in 

closely neighboring rings. Coincidences between detectors in closely neighboring rings 

are summed or rebinned to produce a dataset consisting of 2P + 1 coplanar sets of LORs 

normal to the axis of the camera, where P is the number of detector rings. This dataset 

may be reconstructed into images using standard tomographic techniques. 

 

 

 

Figure 5.5 2D – coincidences between detectors in the same ring or neighboring rings. 



www.manaraa.com

 
43 

 

In three-dimensional (3-D) mode the septa are absent and events are detected between 

detectors lying in any ring combinations and thus the Field of View (FOV) for events is 

increased [1]. This can result in significant increase in the number of random 

coincidences. The image reconstruction from the 3D mode dataset is computationally 

intensive. The computational intensiveness increases with the number of rings employed. 

Retraction of septa allows the tomograph to count a much larger number of LORs 

resulting in a significant increase in sensitivity that allows for less acquisition time. As 

seen in Figure 5.6 the 3D mode allows for counting LORs between any ring 

combinations. 

 

 

 

Figure 5.6 3D – coincidences between any pair of rings permitted 
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5.5 SINOGRAM GENERATION AND REBINNING 

5.5.1 COORDINATES 

An annihilation that occurs at a point in the FOV will result in two oppositely directed 

gamma rays being emitted along a line in any direction. When a pair of crystals detects 

the gamma emissions, the line or LOR between the involved crystals is identified by 

variables (Xr, ф).  Since the gamma emission can be of any direction, the Xr coordinate is 

limited only by the extent of the object scanned and ф can be any angle. ф is commonly 

referred to as the projection angle. 

Xr and ф coordinates are used in a very useful plot known as a sinogram. A sinogram is a 

3-D plot of the total number of LORs for each (Xr, ф) of the tracer activity in an object. 

The number of LORs that occur for a particular (Xr, ф) is the total emission activity along 

that direction in the object for a particular transaxial plane. 

By allowing for negative values of Xr, ф can be limited to 180o. As shown in Figure 5.7, 

LOR A would be identified by sinogram values (Xr, ф1) whereas LOR C would have 

sinogram values (-Xr, ф1). LORs B & D would have the same angle as A & C, but 

different values of Xr. 
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Figure 5.7 LOR and sinogram coordinates 

 

An important point to notice is that a LOR (a line) in the gantry is a point in a sinogram. 

Xr and ф can be viewed as a way of describing the direction of an LOR. An important 

point to remember is that the LORs can be detected is limited by the number of crystals 

in the scanner and are pre-identified and stored in the scanner software. The hardware 
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only has to detect the gamma energy and determine which pairs of crystals are in 

coincidence. The software then identifies and counts the LORs defined by the coincident 

crystal pairs. 

The LORs detected over a period of time can be plotted in sinogram format as shown in 

Figure 5.8. ф is limited to 0 to 180 degrees in the CCW direction. Xr can have positive 

and or negative values. X’s indicate LORs A, B, C and D from Figure 5.7. Notice that 

each LOR in the sinogram plot is a point and they all lie on a horizontal line at the same 

angle ф1. If all the LORs that the scanner is capable of identifying at a projection angle ф 

were plotted, they would all lie on a horizontal line at the position of the projection angle 

ф. This data is called a projection. 

 

Figure 5.8 LORs plotted in sinogram format 



www.manaraa.com

 
47 

If any LOR is detected multiple times, the “color” (either on a gray or color scale) is 

changed for that particular point. Hence the sinogram of an object is a 3D plot of the 

occurrence of LORs that the scanner is capable of detecting. 

5.6 IMAGE RECONSTRUCTION 

The number of counts for a particular LOR joining a pair of crystals is proportional to the 

summation of total activity in the object along the LOR. The set of LORs that are parallel 

to each other and their respective total counts is known as a projection. For a point 

source, this gives rise to a series of intensity profiles as shown in Figure 5.9. 

 

 

Figure 5.9 projections generated from a single point source 
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A process known as backprojection may obtain an estimate of the original source 

distribution. In the process the values of each projection are “painted” along the LORs to 

which they correspond. Backprojection for a single point source is shown in Figure 5.10. 

 

 

 

 

Figure 5.10 Back-projections of a point source (reproduced from [1]) 
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5.7 3D PET DATA  

One of the most common methods of event accumulation during a PET scan is to allocate 

a large memory array such that there is an array element for each LOR that can be 

measured in a scan. These array elements are initialized to zero.  When a coincident event 

is detected, the array element corresponding to the LOR is incremented by one. Thus the 

array elements storing the counts are called bins and the array is called a histogram. 

Histogramming typically involves some loss of information as the bins only store the 

total number of events that have been grouped together based on some common 

properties. The collection of bin values for LORs that are parallel to each other for a 

given angle ф is called a projection. This data collected can be stored and displayed as an 

array indexed by vales xr and ф. These are called Direct Sinograms. The data is stored for 

the range 0 ≤ ф < π.  

In a multi ring scanner a separate coordinate z is needed to identify the rings involved. It 

is the point midway between two detectors in coincidence [26]. Hence z = (r1 + r2)/2 

where r1 and r2 are the axial coordinates of detectors. In 3D mode, another variable is 

needed to identify the ring difference between the coincident detectors because it is 

possible to have LORs with the same z coordinate, but that involve detectors of different 

rings. Let Δr = r1 – r2 be the ring difference since it represents the axial spacing between 

detectors in coincidence.  
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Figure 5.11 Δr and z coordinates of an LOR in a multi ring scanner 

Since xr and ф refer to coordinates in a transaxial plane, the four coordinates (xr, ф, z, Δr ) 

refer to the projection of a LOR onto a transaxial plane located at z as shown in Figure 

5.12. The histogram of the number of LORs detected for a particular (z, Δr) is called an 

oblique sinogram. If Δr = 0, an oblique sinogram is direct sinogram [26]. 
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Figure 5.12 Transaxial view (left) and longitudinal section (right) of scanner showing the 

projection of an LOR onto the transaxial plane located at point z 

5.8 REBINNING 

A Rebinning algorithm is defined as an algorithm, which sorts the 3-D data into a stack 

of ordinary 2-D data sets, where for each transaxial slice the 2-D data are organized as a 

sinogram. The 3-D image is then recovered by applying to each 2-D slice a back 

projection method [26]. This approach allows for significant speedup of 3-D 

reconstruction, which is particularly useful for applications involving dynamic 

acquisitions. 

Due to the large size of a full 3D PET data set, a single projection set can occupy 50 to 

100 bytes. Thus the need to reduce data size becomes important. The time required to 
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reconstruct an image from 3D data is more than an order of magnitude longer than the 

time necessary to reconstruct 2D Data. This is due to a considerable increase in the 

number of LORs than need to be back projected. A process called rebinning can 

accomplish the data set reduction. Because the size of individual crystals is small, the 

angle of θ in Figure 5.12 as represented by Δr is small. The angular difference between 

adjacent values of Δr is small enough to allow the merging of oblique sinograms whose 

Δr differ by a small integer into a single sinogram. This process substantially reduces the 

number of sinograms. Thus rebinning can be described as the process of merging of 

sinograms with the same value of z and adjacent values of Δr. Figure 5.13 illustrates this 

concept where N is the number of axial crystal rings. 

 

Figure 5.13 Principal of rebinning algorithm 
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6 IMPLEMENTATION 

6.1 INTRODUCTION 

The implementation of the rebinning algorithm on the GPUs was based on the GPU 

programming model, which is different from those used on a CPU. In contrast to the 

serial programming models that are usually employed on the CPU, GPU programming is 

based on the stream model [28]. In the stream model, data are represented as streams, and 

kernels perform computation. Each kernel operates on the whole stream of data, instead 

of individual elements. NVIDIA’s Compute Unified Device Architecture (CUDA) and 

current GPUs offer massively parallel processing capability that can handle such 

computational complexity, as is characteristic of coincidence and TOF rebinning. CUDA 

is a co-evolved hardware-software architecture that enables high performance computing 

developers to harness the tremendous computational power and memory bandwidth of 

the GPU in a familiar programming environment – the C programming language [19]. 

6.2 REBINNING ALGORITHM 

Rebinning algorithms involve the computation of several elementary functions such as 

sine, cosine, and arctangent and floating point operations. Such functions are easily 

computed on standard CPU-based architectures (PC and server platforms). While such 

architectures are ideal for post-processing, they are not well suited for real-time 

processing of PET data, especially high count-rate applications. More elaborate CPU-

based architectures could be employed for such tasks, but they are presently not cost 
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effective for the clinical market. The present CUDA based GPUs support IEEE format 

single precision numbers and trigonometric functions [4] and are thus more favorable to 

implement these operations at low cost and a fast rate. Other optimizations like memory 

coalescing further increase the performance of the algorithm on the GPUs. Figure 6.1 and 

Figure 6.2 are pipelined rebinning algorithms for implementation on the PETLINKTM 

DMA Receiver (PDR) proposed by Jones et al. [27]. On the PDR, FPGAs make use of 

the LUTs stored in the 4Mx16-bit flash memory chips for high-speed computation.  

 

 

 

 

Figure 6.1 3-stage PDR Digital Pipeline as applied to Coincident event system. 

(reproduced from [25] with permission) 
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Figure 6.2 7-stage digital pipeline PDR Digital Pipeline as applied to the TOF PET 

System. (reproduced from [25] with permission) 

6.2.1 PARTITIONING OF THE PROBLEM 

When partitioning the rebinning problem the main factors to be considered results are the 

decomposition, assignments, and data acquisition. Preprocessing involves the reduction 

of load on the kernels by precomputing certain values for fast access. Decomposition 

involves exposing concurrency to exploit parallelism, but not so much that the cost of 

communication begins to outweigh the benefits of parallelism. Assignment considers the 

assignment of data to reduce communication between CUDA kernels, balance workload, 

and efficiently interface parallel threads [29].  This means reducing communication 

through effective task scheduling data locality, reducing synchronization costs. Efficient 

Data acquisition is required to process data with no losses to achieve the required 
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throughput. All the factors are interrelated as altering one-factor effects the others. 

The rebinning problem has been decomposed into three major divisions Software, 

Hardware, and Output. The software has been built on C++. The hardware includes the 

PDR card and the GPU. The output involves the writing the output to storage media. 

 

 

Figure 6.3 Partitioning the rebinning problem 

 

 

 

 



www.manaraa.com

 
57 

6.3 SYSTEM 

The newly developed system has a Graphics Processing Unit on a PCI express slot. This 

is very similar to the previous model except for the presence of the PCI based Nvidia 

GPU. The PDR is still used in this scenario but is limited to the collection of 64-bit PET 

coincidence or TOF data. The data from the PET gantry is acquired by PDR card through 

optical fiber cables. The output is written to a RAID 0 array of disk drives. 

 

 

 

Figure 6.4 New system with PDR card along with GPU incorporated on the Data 

Acquisition System. 
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6.4 64 BIT DATA FORMAT 

Based on the guideline to PETLINK [30] Table 6.1 is the 64-bit packet format for 

detector pair. 

Table 6.1 64 Bit raw data packet 

 

Where: 

AX, BX  Transaxial Head Detector Index 

AY, BY  Axial Head Detector Index 

XE  Transaxial Encoding  

AE, BE  Energy Window 

AI, BI   Depth of Interaction 

TF   Time of Flight 

PS   Packet Sync 

TW   Tag Word 0 - 31 (Limited to 32 bits for more effective Bit Packing.) 

Tag_64  Indicates non-event (tag) 64-bit packet when set to 1; 

event 64-bit packet when set to 0. 

Prompt  PET Prompt event word when set to 1; PET Delayed event word when 0. 



www.manaraa.com

 
59 

6.5 WORKING MODEL 

Figure 6.5 depicts a block based working model for the GPU based rebinning system. 

 

 

 

 

Figure 6.5 Working Model of the GPU based rebinning system 
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6.5.1 PRE COMPUTATION AND CONSTANT MEMORY 

The first step in the process is the precomputation of certain values. The rebinning 

algorithms are complex and involve some time consuming for loops. Implementing these 

for loops proved to be too costly and therefore it was decided to precompute all the 

possible values for all combinations of the variables involved in the loops. Once 

calculated, these are loaded onto the constant memory of the GPU. Thus it is a LUT to 

which kernel threads have very fast access. It should be noted that the constant memory 

couldn’t be modified once the CUDA kernel is being executed. The scope of a constant 

variable is all grids, meaning that all threads in all grids see the same version of a 

constant variable. The lifetime of a constant variable is the entire application execution. 

Constant variable are often used for variables that provide input values to kernel 

functions. Constant variables are stored in the global memory but are cached for efficient 

access. Accessing constant memory is extremely fast and parallel. Currently, the total 

size of constant variables in an application is limited at 65,536 bytes.  

 

The 64 bit raw data from the gantry is sent through the fiber cable to the PDR card. This 

data is accumulated in two buffers: Buffer 1 and Buffer 2.  They are designed such that 

once Buffer 1 is filled the data is begins to accumulate in Buffer 2. When the data is 

being filled in Buffer 2 the data from Buffer 1 is read and sent to the global memory of 

the GPU. This enables the data to be sent without losses and the input throughput to be 

maintained. 
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6.6 OPTIMIZATIONS 

Performance optimization revolves around three basic strategies: 

• Maximizing parallel execution. 

• Optimizing memory usage to achieve maximum memory bandwidth. 

• Optimizing instruction usage to achieve maximum instruction throughput. 

 

The following are the optimization techniques employed: 

Maximizing parallel execution starts with structuring the algorithm in a way that exposes 

as much data parallelism as possible. At points in the algorithm parallelism is lost 

because some threads need to synchronize in order to share data between each other, 

there are two cases: Either these threads belong to the same block, in which case they 

should use __syncthreads() and share data through shared memory within the same 

kernel call, or they belong to different blocks, in which case they must share data through 

global memory using two separate kernel invocations, one for writing to and one for 

reading from global memory. The rebinning algorithm is highly parallelizable in which 

the loops that required threads to share data have been removed and replaced with LUTs 

placed in the constant memory. Another aspect is the 64 bit raw data is packed with all 

the required variables and thus the thread in a block are dependent on the data from the 

same block and there is no data dependency on data generated from other thread blocks 

which makes a rebinning algorithm a favorable one to be implemented on the GPU. 

Optimizing memory usage starts with minimizing data transfers with low bandwidth. 

That means minimizing data transfers between the host and the device, since these have 
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much lower bandwidth. That also means minimizing data transfers between the device 

and global memory by maximizing use of shared memory on the device. The bandwidth 

between the device and the global memory is much higher than the bandwidth between 

the device memory and the host memory [4]. Therefore, the algorithm was modified to 

send only the required variables to the kernels rather than the 64 bit raw data. 

6.6.1 CONSTANT MEMORY AND PRECOMPUTATION 

As discussed earlier the precomputed LUTs are stored in the fast Constant memory, 

which proved to be less time consuming than it would have been if the functions had 

been implemented on the GPU. 

6.6.2 MEMORY ACCESS PATTERNS 

The data from the buffers is initially stored in the global memory. The global memory is 

accessible to host code and can be read and write. The global memory space is not 

cached, so it is all the more important to follow the right access pattern to get maximum 

memory bandwidth, especially given how costly accesses to global memory are. 

The effective bandwidth of each memory space depends significantly on the memory 

access pattern. Since global memory is of much higher latency and lower bandwidth than 

on-chip memory, global memory accesses should be minimized. A typical programming 

pattern is to stage data coming from device memory into shared memory. 

Shared Memory is on-chip, and is much faster than the local and global memory spaces 

[20]. In fact, for all threads of a warp, accessing the shared memory is as fast as accessing 
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a register as long as there are no bank conflicts between the threads [20]. So, in order to 

achieve higher memory bandwidth we let each thread to : 

 

Load data from global memory to shared memory, synchronize with all the other threads 

of the block so that each thread can safely read shared memory locations that were 

written by different threads, process the data in shared memory, synchronize again if 

necessary to make sure that shared memory has been updated with the results, and write 

the results back to global memory. 

6.6.3 MEMORY COALESCING 

The global memory access by all threads of a half-warp is coalesced into one or two 

memory transactions if it satisfies the following three conditions: 

Threads must access: 

Either a 32-bit word, resulting in one 64-byte memory transaction, 

Or 64-bit words, resulting in one 128-byte memory transaction, 

Or 128-bit words, resulting in two 128-byte memory transactions; 

All 16 words must lie in the same segment of size equal to the memory transaction size 

(or twice the memory transaction size when accessing 128-bit words). 

Threads must access the words in sequence: The kth thread in the half-warp must access 

the kth word. 

 

If a half-warp does not fulfill all the requirements above, a separate memory transaction 
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is issued for each thread and throughput is significantly reduced [20]. Figure 6.6 is an 

example for coalesced and non-coalesced memory access patterns.  

 

(a)      (b) 

Figure 6.6 Memory Coalescing 

(a) Coalesced memory access resulting in Single memory transaction 

 (b) Non – Coalesced Memory access resulting 10 memory transactions 
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Coalesced memory access of the global memory results in a single memory transaction 

while an improper access results in as many memory transactions thus resulting an 

increase in computation time and thus affecting the performance of the algorithm on the 

whole. 

6.6.4 ARITHMETIC INSTRUCTIONS 

To process an instruction a processor has to read the instruction, execute it and write the 

result. An optimized instruction usage is achieved by minimizing instructions with low 

throughput. Also the algorithm must be such that it has a high number of arithmetic 

operations per memory operation. To issue one instruction, 4 clock cycles for a single-

precision floating-point add, multiply, and multiply-add, integer add, bitwise operations, 

compare, min, max, type conversion instruction [20] and 16 clock cycles for reciprocal, 

reciprocal square root, logarithmic functions [20].  

 

The rebinning algorithm involves computation of several elementary functions such as 

sine, cosine, and arctangent and single precision floating operations. Varied usages of 

instructions have been used in the rebinning to see that the final result computed is not 

affected. For example, __sinf(x), __cosf(x), __expf(x) take 32 clock cycles. sinf(x), 

cosf(x), tanf(x), sincosf(x) are much more accurate and expensive and even slower. 

Though the final result base address is a floating point number, only the exponent of this 

result is taken as the base address. This enables us to experiment with the floating-point 

operations and thus enables us to use high throughput instructions while compromising 
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on accuracy. 

 

A few compiler flags have also been used. The programmer can control loop unrolling 

using the #pragma unroll. It must be placed immediately before the loop and only 

applies to that loop. A number that specifies how many times the loop must be unrolled 

optionally follows it. If no number is specified after #pragma unroll, the loop is 

completely unrolled. 

6.7 ASYNCHRONOUS APPLICATION PROGRAMMING 

INTERFACE 

CUDA has default Application Programming Interface (API) and an Asynchronous API.  

In the default API the memory transfer from the host to device (H2D) and from device to 

host (D2H) block the CPU thread. The host CPU thread is blocked when the kernel on 

the GPU is called and running. The implementation of the rebinning algorithm was done 

with the default API but it was also done with the Asynchronous API, which enables 

asynchronous H2D and from D2H data transfer. It also enables the kernel to be executed 

concurrently while the host code can be executed. 

Events are inserted into a stream of CUDA calls. Since CUDA stream calls are 

asynchronous, the CPU can continue with computations while the GPU is executing 

(including DMA memcopies between the host and device). The CPU can query the 

CUDA event status to determine whether the GPU has completed its tasks. In order to 
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facilitate concurrent execution between host and device, some runtime functions are 

asynchronous control is returned to the application before the device has completed the 

requested task. CudaMemcpyAsync () is used to do the memory transfer 

asynchronously. The runtime also provides a way to closely monitor the device’s 

progress, as well as perform accurate timing, by letting the application asynchronously 

record events at any point in the program and query when these events are actually 

recorded. An event is recorded when all tasks – or optionally, all operations in a given 

stream – preceding the event have completed. Figure 6.7 is a sample code for 

Asynchronous implementation of a kernel 

 

 

Figure 6.7 Asynchronous implementation of kernel in CUDA 
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6.8 SYSTEM SPECIFICATIONS 

CPU 1 is a lower end PC with Intel Dual Core Xeon 5140 2.33 GHz processor on the 

board with 3 GB of RAM. The processor has an L2 Cache memory of 4 MB. It does not 

support the Intel Hyper Threading technology 

CPU 2 is a higher end system that has two physical Nehalem-based dual quad core Intel 

Xeon 5530 2.4 GHz processors each having 12 GB RAM each. Each processor has an 8 

MB cache. The processor support Hyper Threading Technology. 

 

The Graphic Processing Units used for benchmarking are 8800 GTX and 280 GT 

 

Table 6.2 GPU Specifications 

 GeForce 8800 GTX GeForce 280 GT 

Stream Processors  128 240 

Core Clock (MHz)  575 600 

Memory Clock (MHz)  900 1107 

Memory Amount  768 MB 1024 MB 

Memory Interface  384-bit  512-bit 

Memory Bandwidth (GB/sec) 86.4 141 

Texture Fill Rate (billion/sec) 36.8 48.2 
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7 RESULTS 

The following chapters summarizes the results of the GPU-based implementation for 

improved online rebinning performance in clinical 3-D PET in comparison to the existing 

PDR rebinning hardware and stand-alone CPU. The following sections will discuss and 

interpret the results and difficulties encountered 

 

7.1 COMPARISON OF RESULTS 

Figure 7.1 plots the time-based comparison of the Coincident event rebinning for 

different event sizes with respect to time. We see that that the 280 GT on CPU 1 takes 

more time than the same GPU on CPU 2. This is because CPU 2 being an multi core 

machine with advanced Intel system with higher RAM and the board supports PCIE 2 6 

GBps transfer rate.  
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Figure 7.1 Rebinning time performance 

 

Figure 7.2 represents the performance in terms of the throughput that can be supported. 

The existing dedicated rebinning hardware based on the PDR card can support an input 

throughput of only 8 million events per second. We also see that the GPU 8800 GTX that 

has low memory and lower bandwidth compared to GPU 280 GT can support event rate 

of 52 million events per second. The GPU 280 GT supports higher bandwidth and also 

has a higher memory interface fares much better with 82 million events per second. The 

same GPU on a CPU that supports PCIE 2 interface shows increase in performance and 

thus supports 136 million events per second.  
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Figure 7.2 Throughput performance comparision 

 

Figure 7.3 and Figure 7.4 plot the difference between the transfer and execution times for 

the GPU 280 GT on CPu 1 and CPU 2. Here we note an interesting aspect that the 

execution times for the kernel on both CPU 1 and CPU 2 are almost equal, but the 

transfer times differ by a considerable amount. This can be attribute to the fact that the 

CPU 1 supports only PCIe 1 which is 3 GBps while CPU 2 offers a higher bandwidth of 

6 GBps. 

 



www.manaraa.com

 
72 

 

Figure 7.3 Comparision of Execution Time 

 

Figure 7.4 Comparision of Transfer Time 
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Figure 7.5 gives the comparision of the online time of flight (TOF) rebinning. The TOF 

has been implemented in the default API and also using the Asynchronous API. The 

performance of  TOF rebinning on 280 GT on CPU 1 was low compared to coincident 

event rebinning because of the presence of the large number of floating point calculations 

in the TOF rebinning. This implementation could support 66 million events per second. 

The same algorithm implemented in the asynchronous API on CPU 1 resulted in a better 

performance because the data ttransfer to the H2D and D2H has been overlapped with the 

execution of the kernel. This led to increase in performance and could support the input 

rate of 90 milion events per second. Table 7.1 gives the numerical values for the 

Coincident event rebinning performance. 

Table 7.1 Performance of Coincident event rebinning 
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Figure 7.5 TOF Rebinning Performance 

Table 7.2 TOF rebinning performance values. 
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7.2 CUDA VISUAL PROFILER 

CUDA provides a visual profiler to get a statistics for an algorithm implemented on GPU. 

The following are the screenshots of the statistics obtained from the profiler for the 

rebinning algorithm per 1048576 coincident events on CPU 1 with 280 GT. 

The GPU Time Height Plot is a bar diagram in which the height of each bar is 

proportional to the GPU time for a method. Figure 7.6 gives a height plot for the program 

with the time in microseconds on the Y-axis. For the rebinning algorithm we see that the 

transaxial rebinning occupies a major part of the runtime. We also see that the memcopy 

functions in blue, which includes data transfer from H2D and D2H, also are consuming 

the largest portion of time in the total runtime. 

 

Figure 7.6 Height Plot using CUDA visual profiler 
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Figure 7.7 gives a percentage view of the runtime occupancy for the kernels and data 

transfer. We see that the 56 % of the time is being used for data transfer only. This gives 

the user an exact idea about the time occupancy of different kernels and the data transfers 

so that one can concentrate on specific kernels for optimizing them. 

 

 

 

 

Figure 7.7 Percentage plot using CUDA visual profiler 
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The following Figures 7.8 and 7.9 give the transfer times, occupancy ratios, grid sizes etc 

and also some other important data. In Figure 7.8 we see the exact time stamps for the 

kernels executed and also the data transfers. The time taken for each data transfer and for 

the execution of each kernel is given. The 6th memcopy function takes the maximum 

time, as it is the transfer of resultant base address from D2H.  

 

 

 

Figure 7.8 Kernel runtime stats from CUDA visual profiler 
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Figure 7.9 gives information about the number of instructions executed per kernel. It also 

gives the specific size of shared memory in KB used by each block during the kernel 

execution. We see that the 6th memory transfer is the largest which is the single precision 

base address calculated as output. 

 

 

 

Figure 7.9 Instruction Output from CUDA visual profiler 

 

 

 



www.manaraa.com

 
79 

7.3 LIMITATIONS 

The limitations to the implementation have been the bandwidth support of the GPUs for 

the data transfer. This is very low and led to the memcopy () occupying a major part of 

the runtime than the actual time taken by the GPU to execute the kernel. Another 

bottleneck has been the data write speed to the storage media. Each Buffer written was 

taking ~70 ms. This is much higher than the 50 ms taken by the GPU. 
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8 CONCLUSION AND FUTURE WORK 

8.1 CONCLUSION 

In evaluating the entire design and results a lot has been learned regarding the GPU 

architecture, CUDA programming model, and parallel computing.  This thesis has 

successfully presented the GPU-based implementation of the rebinning algorithms in and 

has been tested on hardware in real time. The GPUs have proved to deliver very high 

performance when used for online rebinning. It is known that using an advanced multi 

core system which supports PCIe 2 leads to the reduction of data transfer times and leads 

to a much better performance. At their peak performance the GPUs are 17x faster than 

the dedicated rebinning hardware. This proves that it is worth continuing to explore 

research areas appropriate for GPUs where traditionally FPGA are being used. A faster 

rebinning leads to a faster reconstruction of images and leads to a high patient throughput 

in diagnostic fields. The NVIDIA CUDA architecture for GPU computing is a good 

solution for a wide circle of parallel tasks. CUDA works with many NVIDIA processors. 

It improves the GPU programming model, making it much simpler and adding a lot of 

features, such as shared memory and thread syncing. CPUs are developing rather slowly, 

they are not capable of such performance leaps. In fact, one can now get an inexpensive 

personal supercomputer, sometimes even without investing extra money, as graphics 

cards from NVIDIA are widely spread. 
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The existing PDR rebinning hardware is based on FPGAs. It can accept the imput rate of 

only 8 milion events per second. Developing a system with FPGAs is expensive, time 

consuming and requires skilled manpower.  Whereas with the introduction of CUDA it 

has become easier to use the GPU as a parallel computing device. 

8.2 FUTURE WORK 

As the main bottleneck has proved to be the data transfer from H2D and D2H, it is worth 

exploring the possibility of accessing the GPU Global Memory and writing data to it 

directly. Right now the only possible way of writing data and reading from the GPUs 

global memory is through CUDA.  

Secondly the results write speeds are very low when using traditional hard disk drives 

(HDD) is very low. This can easily mitigate the advantage of the speedups obtained by 

using the GPUs. An option would be to explore the new Solid State Drives (SSD) which 

use solid state memory to store data and offer much higher write and read speeds 

compared to HDDs.  

It is also worthy investing time in trying to increase the data input rate. The present input 

rate to the system saturates at 13 million events/sec while the GPUs are ready to accept 

up to 100 million events/sec.  
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